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The present work is aimed at the study of thermoelastic interactions in an infinite fibre-reinforced
anisotropic plate containing a circular hole in the context of a fractional Green and Naghdi theory
of type II (fractional-type II) in which the model of heat conduction with time-fractional order. The
inner surface of cavity is assumed to be stress free and is subjected to a thermal shock. The
problem is solved numerically using the finite element method. According to numerical results and
graphs, it is found that the introducing a fractional derivative of order � has a significant effect on
the displacement, temperature and stresses. Some comparisons are made to estimate the effects
of the presence and absence reinforcement.
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1. INTRODUCTION

During recent years, several interesting models have been
developed by using fractional calculus to study the physi-
cal processes particular in the area of heat conduction, dif-
fusion, viscoelasticity, mechanics of solids, control theory,
electricity etc. It has been realized that the use of fractional
order derivatives and integrals leads to the formulation
of certain physical problems which is more economical
and useful than the classical approach. There exists many
material and physical situations like amorphous media,
colloids, glassy and porous materials, manmade and bio-
logical materials/polymers, transient loading etc., where the
classical thermoelasticity based on Fourier type heat con-
duction breaks down. In such cases, one needs to use a
generalized thermoelasticity theory based on an anomalous
heat conduction model involving time fractional (non inte-
ger order) derivatives. Green and Naghdi1 in 1993 postu-
lated a new concept in generalized thermoelasticity which
is called the thermoelasticity without energy dissipation.
The principal feature of this theory is that in contrast to the
classical thermoelasticity associated with Fourier’s law of
heat conduction, the heat flow does not involve energy dis-
sipation. In addition, the theory permits the transmission of
heat as thermal waves at finite speeds. Green and Naghdi2–4

as an alternate way of formulating the propagation of heat.
The generalization of the concept of derivative and inte-

gral to a non-integer order has been subjected to several

approaches, and various alternative definitions of fractional
derivatives appeared.5–10 Among the few works devoted
to applications of fractional calculus to thermoelasticity,
we can refer to the works of Povstenko,11–14 who intro-
duced a fractional heat conduction law, found the asso-
ciated thermal stresses. Sherief et al.,15 Youssef16 and
Ezzat17�18 introduced new models of thermoelasticity using
a fractional heat conduction equation. Abbas19 introduced
another new model of a fractional heat conduction equa-
tion, which was developed the Green and Naghdi theory
with time-fractional order.
Fiber-reinforced composites are used in a variety of

structures due to their low weight and high strength. Mate-
rials such as resins reinforced by strong aligned fibers
exhibit highly anisotropic elastic behavior in the sense that
their elastic moduli for extension in the fiber direction are
frequently of the order of 50 or more times greater than
their elastic moduli in transverse extension or in shear. The
theory of strongly anisotropic materials has been exten-
sively discussed in the literature, Belfield et al.20 studied
the stress in elastic plates reinforced by fibers lying in con-
centric circles. Sengupta and Nath21 discussed the problem
of surface waves in fiber-reinforced anisotropic elastic
media. Abbas and Abd-Alla22 showed that, the effect of
relaxation time in generalized thermoelastic interaction in
an infinite fibre-reinforced anisotropic plate containing a
circular hole. Tian et al.,23 Abbas and Abbas et al.24–27

applied the finite element method in different generalized
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thermoelastic problems. Recently,28–30 studied other prob-
lems in waves.
This paper considers thermoelastic with time-fractional

derivative problem involving such circumferentially rein-
forced plates. The composite material is then locally
transversely isotropic, with the direction of the axis of
transverse isotropy now not constant, but everywhere
directed along the tangents to circles in which the fibers
lie. The problem has been solved numerically using a finite
element method (FEM). The displacement, the tempera-
ture and stresses distributions are shown graphically with
some comparisons.

2. PROBLEM FORMULATION:
GOVERNING EQUATIONS

In the context of the Green and Naghdi theory,1 abbas19

and Abbas and Abd-Alla,22 the field equations for lin-
ear equations governing fractional order thermoelastic
interactions in a fiber-reinforced linearly thermoelastic
anisotropic medium whose preferred direction is that of
a unit vector a, in the absence of body forces and heat
sources, are as follows:

�ij�j =�ui i�j=1�2�3 (1)

K∗T�ii=
�1+�

�t1+�
��ceT +To�ijui�i�� 0<�≤1�

i�j=1�2�3 (2)

�ij =	ekk
ij+2�T eij+��akamekm
ij+aiajekk�

+2��L−�T ��aiakekj+ajakeki�+�akamekmaiaj

−�ij�T −T0�
ij � i� j�k�m=1�2�3 (3)

where � is the mass density; ui the displacement vec-
tor components; eij the strain tensor; �ij the stress tensor;
T the temperature change of a material particle; To the
reference uniform temperature of the body; �ij the ther-
mal elastic coupling tensor; ce the specific heat at con-
stant strain; K∗ the material characteristic of the theory;
	, �T are elastic parameters; ���� ��L −�T � are rein-
forced anisotropic elastic parameters and the component
of the vector a are �a1� a2� a3� where a

2
1+a2

2+a2
3 = 1. The

comma notation is used for spatial derivatives and super-
imposed dot represents time differentiation. For circum-
ferential reinforcement, it is normal to employ a system
of cylindrical polar coordinates �r� 
� z� and henceforth
all components are referred to these coordinates. In this
system, for cylindrical symmetric interactions, the dis-
placement vector possesses only the radial component u=
u�r� t�, where r is the radial distance measured from the
origin (point of symmetry), and the stress tensor is deter-
mined by the radial stress �rr and the circumferential stress
(hoop stress) �

. For circumferential reinforcement the
vector a is everywhere directed in the tangential (i.e., 
)

direction, so that in cylindrical polar coordinates a has
components �0�1�0�� In this case, Eqs. (1)–(3) yield the
following governing equations for u and T :

��rr

�r
+ 1

r
��rr −�

�= �

�2u

�t2
(4)

K∗
(
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r
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(
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)
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�u

�r
+ �	+��

u

r
−�11�T −To� (6)
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 = �	+��
�u
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−�22�T −To� (7)

with �11 = 2�	+�T ��11+�	+���22, �22 = 2�	+���11+
�	+ 2�+ 4�L − 2�T +���22, where �11, �22 are coeffi-
cients of linear thermal expansion. For convenience, the
following non-dimensional variables are used:
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1
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In terms of the non-dimensional quantities defined in
Eq. (8), the above governing equations reduce to (dropping
the dashed for convenience)
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1
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)
The surface of the hole i.e., r=b is assumed to be stress

free and is subjected to a uniform step in temperature
effect so that the boundary conditions are taken as:

�rr�b�t�=0� T �b�t�=T1H�t� (13)

where H�t� denotes the Heaviside unit step function.
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Initially the medium is at rest and undisturbed and the
initial conditions are:

u�r�0�= u̇�r�0�=0� T �r�0�= Ṫ �r�0�=0 (14)

2.1. Finite Element Method

The Finite element method is a powerful technique orig-
inally developed for numerical solution of complex prob-
lems in structural mechanics, and it remains the method
of choice for complex systems. A further benefit of this
method is that it allows physical effects to be visual-
ized and quantified regardless of experimental limitations.
In this section, the governing equations of generalized ther-
moelasticity with fractional order derivative based upon
Green and Naghdi of type II are summarized, using the
corresponding finite element equations. The finite element
equations of a generalized thermoelasticity problem can be
readily obtained by following standard procedure. In the
finite element method, the displacement component u and
temperature T are related to the corresponding nodal val-
ues by

u=
m∑
i=1

Niui�t�� T =
m∑
i=1

NiTi�t� (15)

where m denotes the number of nodes per element, and
N the shape functions. In the framework of standard
Galerkin procedure, the weighting functions and the shape
functions coincide. Thus,


u=
m∑
i=1

Ni
ui� 
T =
m∑
i=1

Ni
Ti (16)

with Eqs. (13) and (14), u′ =u�i and T ′ =T�i can be
expressed as

u′ =
m∑
i=1

N ′
i ui�t�� T ′ =

m∑
i=1

N ′
i Ti�t� (17)


u′ =
m∑
i=1

N ′
i 
ui� 
T ′ =

m∑
i=1

N ′
i 
Ti (18)

Thus, the finite element equations corresponding to
Eqs. (9)–(12) can be obtained as

me∑
e=1

([
Me

11 0
0 0

]{
üe

T̈ e

}
+
[

0 0
Ce

21 C
e
22

]{
u̇e

Ṫ e

}

+
[
Ke

11 K
e
12

0 Ke
22

]{
ue

T e

}
=
{
F e
1

F e
2

})
(19)

where me is the total number of elements. The coefficients
in Eq. (19) are given below.

Me
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)
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dr

Ke
12=
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−B3�N
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r
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]
dr

Ke
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∫ [
�N ′�T �N �− 1

r
�N �T �N �

]
dr�

F e
1 = �N �T �̄�r1� F e

2 = �N �T q̄�r1
Symbolically, the discretized equations of Eq. (19) can be
written as

Md̈+Cḋ+Kd=F ext (20)

where M , C, K and F ext represent the mass, damping,
stiffness matrices and external force vectors, respectively;
d= �u T �t� �̄ represent the component of the traction, and
q̄ represents heat flux. On the other hand, the time deriva-
tives of the unknown variables have to be determined by
Newmark time integration method or other methods (see
Wriggers31).

2.2. Numerical Example

To study the effect of reinforcement on wave propagation,
we use the following physical constants for generalized
fibre-reinforced thermoelastic materials.22

�=2660 kg/m3� 	=5�65×1010 N/m2

�T =2�46×1010 N/m2� �L=5�66×1010 N/m2

�=−1�28×1010 N/m2� �=220�90×1010 N/m2

�11=0�017×10−4 deg−1� �22=0�015×10−4 deg−1

ce=0�787×103 J kg−1 deg−1� To=293 k

Before going to the analysis, the grid independence test
has been conducted. The grid size has been refined and
consequently the values of different Further refinement of
mesh size over 10000 elements does not change the values
considerably, which is therefore accepted as the grid size
for computing purposes. Here all the variables/parameters
are taken in non-dimensional forms. The results for dis-
placement, temperature, radial stress and hoop stress has
been carried out by taking T1=1 and t=0�3�
The first group (Figs. 1–4) show the four curves pre-

dicted by the different theories of Green and Naghdi theory
of Type II (�=1) and fractional Green and Naghdi theory
of Type II (�=0�2�0�5�0�8� with reinforcement (WRE).
As expect, the fractional order has a great effect on the
distribution of field quantities.
The second group (Figs. 5–8) represent the variations of

the physical quantities under fractional Green and Naghdi

J. Comput. Theor. Nanosci. 11, 1–5, 2014 3



R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Fractional Order GN Model on Thermoelastic Interaction in an Infinite Fibre-Reinforced Anisotropic Plate Abbas

Fig. 1. Variation of u against r for different values of � at t=0�3.

Fig. 2. Variation of T against r for different values of � at t=0�3.

theory of Type II (�=0�3� with reinforcement (WRE) and
without reinforcement (NRE). In Figures 5–8, the solid
line (—) refers to a thermoelastic solid without reinforce-
ment (NRE) and the dotted line (…) refers to a thermoe-
lastic solid with reinforcement (WRE). Figure 5 represents
the radial variations of displacement with reinforcement
(WRE) and without reinforcement (NRE). It is observed
that the displacement is continuous and the displacement
gradually decreases with r and is zero at r=1�7 for (NRE),
is zero at r=1�4 for (WRE). This is also in agreement

Fig. 3. Variation of �rr against r for different values of � at t=0�3.

Fig. 4. Variation of �

 against r for different values of � at t=0�3.

Fig. 5. Variation of u against r at t=0�3 and �=0�3 with (WRE) and
without (NRE) reinforcement.

with the theoretical result where beyond the thermal wave
front, the displacement vanishes. From the result there
is no significant difference in the value of the tempera-
ture that is observed with reinforcement (WRE) and with-
out reinforcement (NRE) as shown in Figure 6. Figure 7
shows the graphical presentation of the radial stress versus
distance r and indicates finite jumps at the elastic wave
fronts and then it approaches and ultimately becomes zero.
Figure 8 gives the variation of the hoop stress versus r .

Fig. 6. Variation of T against r at t=0�3 and �=0�3 with (WRE) and
without (NRE) reinforcement.
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Fig. 7. Variation of �rr against r at t=0�3 and �=0�3 with (WRE) and
without (NRE) reinforcement.

Fig. 8. Variation of �

 against r at t=0�3 and �=0�3 with (WRE)
and without (NRE) reinforcement

The hoop stress at first decreases, and then suffers a finite
jump at the elastic wave front, and then it approaches and
ultimately becomes zero. We observed that the radial stress
is zero at r=1 which satisfies the boundary conditions
of the problem. Hence, we conclude with the following
points.
(1) In all figures, it is noticed that the fractional order �
has a significant effect on all the fields, and the curves are
smoother in the case (�=0�2�0�5�0�8).
(2) The way from the result there is no significant differ-
ence in the value of temperature is noticed with reinforce-
ment (WRE) and without reinforcement (NRE).
(3) The reinforcement has a great effect on the distribution
of displacement and stresses.

3. CONCLUSION

In this paper, we have studied the fractional order Green
and Naghdi model on thermoelastic interaction in an

infinite fibre-reinforced anisotropic plate containing a cir-
cular hole. According to the results, we have to construct
a new classification to all the materials according to its
fractional parameter, where this parameter becomes new
indicator of its ability to conduct the thermal energy.
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